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Abstract - The Adaptive Iterative Filter (AIF) has been proposed to use for the investigation of heat transfer between a 
high temperature surface and the cooling system by means of an Inverse Heat Transfer Problem (IHTP) solution. 
Inverse problems are ill-posed problems in the sense of existence, uniqueness and stability and, as such; in the general 
case, they do not have a universal solution.  Therefore, on the stage preceding the actual solving of the real inverse 
problem, the simulating inverse analysis should be performed.  This analysis, which includes the solution of a 
methodical inverse problem, is very desired or, even, sometimes required to obtain stable and precise results with each 
problem under study. The suitable numerical algorithms of AIF are used for the investigation of the influence of the 
cooling sprayer properties of the heat transfer coefficient of the two-phase regime during the process of the cooling of 
an aluminum ingot, all identified as a function of the temperature. 
 
1. INTRODUCTION 
In our recent research the AIF has been successfully used for the simultaneous identification of the thermophysical 
characteristics of super-hard synthetic polycrystalline materials as a function of temperature by means of the internal 
IHTP solution [21].  The mathematical model and its statistical modification for the AIF approach for the solution of 
inverse problems have been presented in reference [21].  Detailed analysis of using the AIF method for the solving of 
internal inverse problems also has been done in that research [21].  In this presentation the AIF is used for solving the 
external IHTP to investigate the influences of the cooling sprayer properties on the heat transfer of the two-phase 
regime during the process of the cooling of an aluminum ingot. 
 
2. MATHEMATICAL MODEL AND SOLUTION OF STATED INVERSE HEAT TRANSFER PROBLEM BY 
MEANS OF ADAPTIVE ITERATIVE FILTER   
The final target of the mathematical model presented below is an identification of the heat transfer coefficient of the 
two-phase regime during the process of cooling of a solid aluminum ingot. The equations of this process that will be 
utilized as an initial mathematical model for IHTP solution may be written: 

 

( ) ( ) ,
τ∂
∂

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂ TTC

x
TTk

x V  

 

                                                 ,00;)0,(
0

==∂
∂

== xx
TTxT τ                                                             (1) 

( ) ( )( ) ( ),,, ττ
∂
∂ TpqTaTpTph

x
TTk =−=−  

 
 

where x is space, k(T) is the thermal conductivity, CV (T) is the specific heat per unit volume, h(Tp,τ) is the heat transfer 
coefficient, Ta is the ambient temperature, Tp is the temperature of boundary surface, T0 is the initial temperature, q 
(Tp, τ) is the heat flux and τ is time. 

The model (1) can be written in the finite-difference matrix form:  
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where X k
r

is the stochastic state vector, U k
r

is the stochastic vector of boundary conditions or, using control theory 
terminology, stochastic vector of controlling actions because boundary conditions are the factors that control thermal 
process and W k

r
is the uncorrelated white noise.  

The iterative filter [7, 8, 18], which has been created for the solution of parametric and non-parametric 
identification problems, was successfully used for solving internal and external IHTP to determine a heat transfer 
coefficient and heat flux as well as the material thermophysical characteristics [6 - 10, 12].  However, as reported in [18, 
19, 21], this iterative modification of optimal dynamic filter always requires the preliminary rearrangement of the initial 
heat transfer equations (1), which enables the transitional matrix to be obtained for solving the specific inverse problem.  
Actually, the iterative filter method assumes the linearization of the initial mathematical model (1), and its modification 
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depends on the desired thermal parameters.  The model (2) obtained from (1) and written in the finite-difference matrix 
form allows one to determine the iterative filter transition matrices Φk+1,k, Fk+1,k, and Gk+1,k.  Reiterating reference [21], 
it is necessary to repeat here the most significant advantages of the iterative filter.  They are: high accuracy of solutions, 
the ability to use the number of iterations as a regularizing parameter, and the possibility to adopt the expression 

0== ZdZd &rr
τ as an initial equation for the unknown parameters.  There are also several significant disadvantages that 

often prevail all advantages.  Firstly, it is difficult to modify the mathematical model in order to include the desired 
parameters in the augmented state vector X k

r
 of estimates that consist of the state vector and vector of unknown 

parameters.  Secondly, the transition matrices of this system should be known with certainty, whereas during the 
iterative filter calculations, only their estimates, even if refined by iterative process, can be obtained.  Thirdly, due to the 
enormous dimensions of the algorithm vectors and matrices, a great deal of computer memory and speed are required.  

In order to take advantage of the iterative filter and minimize the difficulties, the method of AIF, first discussed in 
the references [13 - 15], has been proposed for the identification of the heat transfer parameters, for solving inverse 
problems, and for the following thermal system simulation.  

This paper focuses on the utilization of the AIF methodology for the identification of the heat transfer coefficient 
between the cooling media and the metal slab during the process of cooling of the aluminum ingot.  

The thermal system mathematical model (1) formalized in the form of a matrix-vector equation could be written as 
the following stochastic discrete equation [7, 18]: 
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where A, L, M, N are the matrices of the coefficients obtained from the spatial-time discretization of mathematical 
model (1), all matrices are the functions of thermophysical parameters, U is the control vector that includes boundary 
conditions and T k

r
 is a state vector (temperature field).   

An augmented state vector X k
r

from equation (2) includes temperature field T k
r

and unknown thermal 
parameters.  That is why equation (3) is a part of the general equation (2).  To complete equation (3), the equations of 
the unknown parameters must be added.  This will be the equation 0== ZdZd &rr

τ that has been mentioned above.  The 
latter equation and equation (3) are used in the iterative filter or other dynamic filter modifications that have been 
created before the iterative filter [5, 7].  AIF method does not require the calculation of transition matrices as well as the 
additional equation for unknown parameters.  

To obtain the matrix-vector formula (3), the usual finite-difference approximation (implicit scheme) of the heat 
conduction equation and boundary conditions (1) has been used to create the following equation:   
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Equation (3) can be used for the calculation of the matrix of measurement of AIF for the determination of the 
boundary conditions h(Tp,τ) or q(Tp,τ). These variables are supposed to be identified on the basis of temperature 
measurements. 
    The fundamental algorithm of AIF [18, 19] can be written as follows:  
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where )(
1/1

j
kk

Z
++

)r
is the unbiased, with minimum dispersion, estimate obtained for the vector of the parameters being 

defined at the j-th iteration of the k+1 time step on the basis of the vector measurements
1

~
+k

Y
r

, Pk/k is the covariance 

matrix of the estimate errors, Rk+1 is the covariance matrix of the measurement errors, Kk+1 is the weight matrix and 
)(
1

j
k

H
+

 is the non-stationary artificial matrix of measurements.   

The )(
1

j
k

H
+

matrix terms represent the partial derivatives of the measured parameters with respect to the identified 

parameters. The calculation of the artificial measurement matrix, by the numerical method, requires the solution of the 
equations of the process under study several times at each iteration, that is solving several times the direct heat transfer 
problems at each iteration (please see the detailed explanation in [19, 20, 21]). 
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One can deduce that an AIF method allows the identification of the desired parameters (vector )(
1/1

j
kk

Z
++

)r
) only 

instead of the determination of whole augmented state vector X k
r

as it takes place when the iterative filter is used.  If 
the number of temperature measurements is m and desired parameters n, the matrix of measurement H can be written as 
follows:  
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The limitation of the iteration number “i” of the AIF algorithm is used as the regularizing factor of the iteration 
process at each time step. The explanation and proofs of the iterative regularization have been published by the authors 
of this article as well as by numerous other authors [1 – 3, 6, 7, 15, 16, 18, 20].  This number “i” is selected in terms of 
the agreement of the mean square errors of the measurement with the value of general discrepancy, both over k 
moments of time. In addition, the restoration of the diagonal of the covariance matrices of estimate errors to its initial 
value, at each time step, is used [15, 18].  This restoration allows us to speed up the convergence of the solutions 
obtained by the AIF algorithm. 

 
3. SIMULATING AN INVERSE ANALYSIS USING AN ADAPTATIVE ITERATIVE FILTER 
It is well known that inverse problems are ill-posed problems in the sense of existence, uniqueness, and stability, and 
therefore, in a general case, they do not have a universal solution. That is why, as it was reported in [20, 21], at the stage 
preceding the actual solving of a real inverse problem, simulating inverse analysis should be performed. This analysis, 
which includes the solution of a methodical inverse problem, is desired or, sometimes, required to be performed for the 
purpose of obtaining stable and precise results. In this paragraph, we focus on the solution of methodical inverse 
problems by means of AIF for the investigation of the two-phase process of the cooling of a solid material surface.  
Actually, the stated and solved methodical external inverse problems relate to the identification of the heat transfer 
coefficient of the 3rd kind of boundary condition.  The initial mathematical model and testing plan were taken in many 
ways to be similar to the investigation in paper [21] with the only difference being that in reference [21] internal IHTP 
have been solved whereas in this presentation the problems being investigated are external IHTP.  Finite-difference 
approximation is suggested.  The matrix form (3) of the equations of the heat transfer system under study is used as the 
initial mathematical model.  The finite-difference approximation is proposed to obtain the matrix form (3) from 
equation (1).  The exact temperature data that is the result of the direct heat transfer problem solution is disturbed by a 
random value using the generator of a Gaussian distribution (white noise). The simulating plan includes, but is not 
limited to, the determination of the influence on the identification results of the following: 
 the position and number of measurement devices (thermocouples or other temperature sensors), 
 the magnitude of time step of recurrent process, 
 the smoothing of temperature measurements, 
 the value of the errors of real temperature measurements.  

A number of one-dimensional direct problems have been solved to calculate the “measured” temperatures.  
Actually, the three-dimensional problem was stated.  However, the heat transfer between ambient and both main 
surfaces of a parallelepiped-shape metal ingot under study is symmetric about the mid-section and uniform along the 
surfaces.  Taking into consideration the above symmetry of the heat transfer, and the fact that the other side surfaces of 
the object are insulated against heat transfer, the model of the process under investigation may be represented as a rod 
of one-half length of the width of the initial parallelepiped object (total width of parallelepiped is 0.4 m).  This metal 
rod of 0.2-meters was divided into 20 sections (the total numbers of nodes is 21, from 0 to 20; one-dimensional mesh 
width is 10 mm).  The time step was assumed to be between 0.02 and 0.0625 seconds, and the temperature 
measurement errors are assumed to be in the range of 0.5% to 10% of the highest measured temperature.  On one side 

of the rod (at the node #0), the trivial boundary conditions of the 2nd kind were considered: ( ) .00 ==xx

T
Tk

∂

∂
  On 

the other side (at the node #20) the 3rd kind of boundary condition ( ) )(),(2.0 aTTThxx

T
Tk −⋅==− τ

∂

∂
was with 

two-phase regime cooling.  The heat transfer coefficient for the solution of direct problems was taken as follows: 
 h(T)=0.32*T-120(kW/m². K), 400 ≤ T ≤ 500  ; 
 h(T)=-0.12*T+100 (kW/m². K), 500 ≤ T ≤ 800.  
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The metal’s thermophysical characteristics are: thermal conductivity  k(T) = 385  - 0.02*T(W/m.K), specific heat per 
unit volume  Cv(T) =3450 - 0.05*T(kJ/m³.K). 
 
Influence of the location of temperature sensors.  The locations of the sensors are taken, respectively, at the nodes 
n=2, 5, 10, 15, and 19.  The initial temperature distribution is: T0  = 850K, and the measurement errors equal to 1% of 
Tmax.  The initial approximation of the desired heat transfer coefficient is taken: ho=8000,W/m².K, and covariance matrix 
of the initial estimate: P0/0=diag{8.10³}.   

Restoration of the diagonal of the covariance matrices of the estimate errors to their initial values, at each time step, 
is used.  This restoration considerably influences the regular properties of the algorithm as well as the quality of the 
estimates and the rates of their convergence [15, 18].  This technique is especially important when measurement errors 
(or value σk - sum of mean square errors of temperature measurements over k time steps) are large and the diagonal 
elements of covariance matrices of estimate and measurement errors compare well with each other.  The process of the 
matrix Pk/k restoration has to begin after the last iteration at each time step where the violation of the filter convergence 
condition occurs [18].   

The pointwise identification procedure [9, 10, 12, 14, 17, 21] without preliminary approximation of the desired 
function has been applied.  To obtained the h(T) function, first the functions h(τ) and Tp(τ) were determined.  The 
results of the influence of the position of temperature measurement nodes on the accuracy and stability of the numerical 
solution are presented in Figure 1, where:  
• h2, h5, h10, h15, h19 are the identified curves of the heat transfer coefficient identified on the basis of the 

temperature data measured at nodes n=2, 5, 10, 15, and 19, respectively 
• The accuracy of the results and stability of the obtained curves are acceptable when the temperature is measured at 

nodes 10, or 15, or 19.  The maximum identification errors over the whole temperature range (400 ≤ T ≤ 800) of 
parameter h(T) are 13%, 6%, and 7%, with respect to measurements at nodes 10, or 15, or 19. 
From Figure 1 one can conclude that the accuracy of the identified heat transfer coefficients determined on the 

basis of measurements taken at nodes close to the heat source h15 and h19 (high temperature gradient area) are very 
precise, whereas the accuracy of the h5 curve determined based on measurement at node 5 (far from heat source, low 
temperature gradient area) cannot be accepted.   However, it needs to be noticed that the accuracy of curve h5 is 
improving while the cooling process continues because the temperature gradient also increases in this area from one 
time step to another.  Curve h2 is unstable because node 2 is very far from the heat source and the temperature gradient 
in this area is low throughout the cooling process. 

Preliminary conclusions of the required location of temperature measurement: 
• The accuracy of the identification of the heat transfer coefficient is acceptable if the thermocouples are mounted in 

the area of relatively high temperature gradients.  Therefore, it is not necessary to take measurements in the highest 
temperature gradient area.  

• When the temperature is measured in the medium temperature gradient area, the resulting accuracy is satisfactory, 
and the curves are always stable.  

• Measurements taken in the low temperature gradient area lead to unacceptable accuracy of the identified 
parameters and the result is very unstable. 
The explanation of this phenomena from the control theory point of view is the following: at the beginning of the 

intensive two-phase cooling (or heating) process, the temperature near the heat source (the unknown boundary 
conditions) changes very fast, while on the opposite side, far from the heat source, the temperature changes very slowly 
and sometimes does not change at all (the thermal inertia problem).  As a result of the latter issue, the calculated 
elements of the covariance matrix of the estimated errors are wrong and the identified parameters are unstable.  
Influence of time step.  In order to regularize the process and to eliminate the instability when measurements are still 
taken at low gradient areas, it is possible to apply the so-called natural regularization procedure by time step [1, 5, 7].  
One could increase the time step which results in increasing the temperature values of the low temperature gradient 
area.  However, in this case, due to very limited number of temperature measurements, there is the jeopardy of 
sacrificing accuracy while obtaining stability.  In fact, in the stated problem, the identification results will not correctly 
represent the actual two-phase cooling process curve.  As shown in Figure 2, the curves of heat transfer coefficients h2b 
and h2c are obtained based on the same temperature measurements in node 2.  The time step during measurement 
process to identify curve h2b was 0.05 sec, while determining curve h2c the time step was 0.0625 sec.  Curve h2 is the 
same unstable curve that was presented in Figure 1, the identification process time step for this curve being 0.02 sec. 
The h2b and h2c results became stable, but they do not precisely represent the physical phenomena of the two-phase 
cooling process.  This research has confirmed the conclusion of the previous paragraph where it was mentioned that the 
thermocouple(s) should be located in the relatively high temperature gradient area. 
Influence of the smoothing of temperature measurements.  The next step was the study of the influence of 
smoothing temperature measurement data on determining the heat transfer coefficient.  The results are presented in 
Figure 3, where the identified curves h19a and h19b are respectively obtained based on non-smoothed and smoothed 
temperature measurement data at node 19.  The temperature measurement errors were 10% of Tmax. The curve h19b 
obtained from the smoothed temperature data at node 19, is stable, however, the accuracy is unacceptable.  For 
example, the very important actual maximum of the heat transfer coefficient at critical temperature Tcr=500K is equal to 
hmax=40 (kW/m².K), whereas the identified maximum hmax=28 (kW/m².K) relates to Tcr=428K.  The curve h19a obtained 
on the basis of non -smoothed temperature data at the same node 19 represents the two-phase process much better.  This 
curve is relatively stable around the exact values.  The accuracy is also acceptable: the above-mentioned maximum is 
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h=45.1(KW/m².K) at Tcr=522K, relatively close to the theoretical values (bearing in mind that the noise was increased 
to the unrealistic value of 10% of the maximum of the measured temperatures).  

Conclusion: 
• It is vital to use a non-smoothed temperature measurement data for the identification in short and intensive thermal 

processes, specifically, the two-phase cooling process. 
• In general, this investigation has confirmed our previous research that, in general, the statistical methods, and, 

particularly, the AIF and iterative filter methods are highly tolerant to measurement anomalies and are not affected 
significantly by measurement errors [7, 10, 14, 15, 18, 21].  An increase in the measurement errors enlarges the 
estimate errors but does not disrupt the stability of the identification process.  Moreover, for the investigation of the 
short and intensive thermal processes, the use of non-smoothing measurement data is not only desired, but, even, 
required.  

 

Figure 1: Influence of the Position of Temperature Measurement Nodes on the  Identification of 
Heat Transfer Coefficient
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Figure 2: Influence of the Time Step on the Identification of Heat Transfer Coefficient in 
Two-Phase Regime
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Influence of the number of temperature sensors.     The results of solution of appropriate inverse problems are 
presented in Figure 4, where h(5), h(5,10), h(10,15), h(5,10,15), and h(5,10,15, 19) are the curves obtained with the 
measurements taken at nodes (5), (5,10), (5,10,15), and (10,15,19), respectively. 

The temperature errors were 0.005*Tmax.  All the curves are stable enough around the exact curve.  The accuracy of 
the curve h(5,10) is better than h(5) but worse than the accuracy of the h(10) results obtained based on measurements in 
node 10 only. The same is valid for h(5,10,15): this curve is more accurate than curve h(5) but less accurate than curve 
h(10).  The reason for these phenomena is that the node 5, representing the low temperature gradient area, affects the 
solution accuracy much more significantly even if the number of measurement nodes is increased. This result confirms 
the importance of choosing temperature measurement nodes in high temperature gradient areas.  (Please also keep in 
mind the above-mentioned note regarding the calculation of elements of the covariance matrix of estimated errors).  

Fig 3: Influence of the Smoothed Temperature Measurements  Data on the Investigation of 
Two-Phase Regime of Intensive Cooling
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Concerning the curves h(10,15) and h(10,15,19) obtained on the basis of the corresponding nodes and representing 
the medium-high temperature gradient area, their accuracy substantially improved with the increase of the number of 
nodes, and reached the optimum result with three nodes of temperature measurements.  Thus, the number of 
temperature measurements improves the solution accuracy if the location of thermocouples has been chosen 
appropriately as it was shown in this section. The optimum number of measurement nodes is three.  

 
4. INVESTIGATION OF TWO-PHASE PROCESS OF ALUMINUM INGOT COOLING 
Aluminum is the earth’s most abundant metallic element making up approximately eight percent of the planet’s crust.  
Among the common metals aluminum cedes first place only to steel. While aluminum never occurs naturally in its pure 
form, it is commonly found in the form of oxides and extracted from the bauxite. Aluminum obtained from chemical 
and electrolytic process is cast into large parallelepiped blocks, and then solidified. The obtained ingot, at a temperature 
T=873K, is cooled by a flow of disperse cold water.  

Heat transfer between the hot aluminum surface and the cooling media depends upon several parameters. The most 
important is the fluid dispersing coefficient g [4], which represents the ratio between the amount of pulverized cooling 
fluid and the temperature of the cooled surface per unit time.  

The experiments were conducted in the specially built test rig described in the same reference [4].  Side and bottom 
surfaces of the cylindrical aluminum rod are insulated by four screens.  As a result, the one-dimensional temperature 
field that significantly simplifies the process of identification needs to be investigated.  A series of tests with various 
dispersing coefficients ranging from 5.5 to 80 mm³/mm²s were conducted.  The measurement data are taken every 0.4 
sec from three sensors that are mounted, respectively, 5, 15, and 25 mm from the cooled surface.   

The aluminum rod being tested was divided into 20 sections with the spacing ∆x = 5 mm between nodes.  
Aluminum thermophysical characteristics are given: k=160+0.3*T,(W/m.K); Cv=2160+0.79*T,(kJ/m³.K).  The 

h(Tp) – exact curve 
 
h19a – non-smoothed temperature measurement data 
 
 h19b – smoothed temperature measurement data 

Figure 3: Influence of the Smoothed Temperature Measurement Data on the Investigation of Two-Phase Regime of 
Intensive Cooling 
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maximum error of measurements is estimated to be: σ = 0.02*Tmax.  The initial temperature of the cooled object is: 
T(x,τ=0)=873K.  The average environment temperature is: Ta = 294 K.  The initial value of desired heat transfer 
coefficient to start the AIF procedure is estimated to be: h0 = 8000, W/m². K.  The initial covariance matrix of estimated 
errors was taken:  P0/0= diag(7.10³).  The technique of the restoration of the diagonal of the covariance matrices of the 
estimate errors to its initial value at each time step is applied.   
 

Figure 4: Influence of the Number of  Temperature Measurement Nodes on the Accuracy of 
Identification of  Heat Transfer Coefficient 
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The obtained results are compatible and coincide satisfactory with other research of similar two-phase boiling 

process [4, 11, 22].  This is illustrated by Figure 5, which shows the relationships between the heat transfer coefficient 
and the surface temperature for different dispersing coefficients g = 5.6, 12.8, 32.5, 50, and 78.8 mm³/mm²s.  The actual 
change from nucleating boiling regime to film boiling is observed at a mean critical temperature close to: Tcr = 450K.  
Maximum values of the desired heat transfer coefficient at this critical temperature are varying between 40 – 65 
kW/m².K.  The coincidence of our calculated values with the values by other authors obtained mostly by different 
measurement methods shows the reliability of the results of identification of cooling process of an aluminum ingot by 
the flow of disperse cold water. 

In order to complete this analysis, the variation of the heat transfer coefficient h with respect to the dispersing 
coefficient g, was studied.  This analysis has been done on both sides of the cooling process, nucleating boiling regime 
and film boiling regime (before and after critical temperature). 

The curves h(g) for a given surface temperature Tp within these two regions (Tp> Tcr and Tp<Tcr) have a trend as 
shown in Figure 6 and 7.  

Based on required boundary conditions (heat flux or heat transfer coefficient), geometry of sprayer in use, it is easy 
to figure out the aluminum surface temperature during the cooling process to predict the heat exchange on a boundary.  
Another possible scenario of using nomograms in Figures 6 & 7 is a selection of the required sprayer (specific 
dispersing coefficient) when boundary conditions and required surface temperature are given. 

 
5. CONCLUSIONS 
• The obtained results show that the AIF method can be used to create a complete chart of the heat transfer 

coefficient h(Tp,g) as a function of the cooled surface Tp and the dispersing coefficient g. 
• The AIF method has been successfully used for the investigation of the two-phase heat transfer process during the 

intensive surface cooling by means of dispersed water jet. 
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